写完帕秋莉的超级多项式于是正好贴个模板大汇总(带优化的那种...)
//by Judge#include#define Rg register#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i I;--i)#define ll long longusing namespace std;const int mod=998244353;const int iG=332748118;const int M=3e5+3;typedef int arr[M];#ifndef Judge#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)#endifchar buf[1<<21],*p1=buf,*p2=buf;inline int inc(int x,int y){return (x+y)%mod;}inline int dec(int x,int y){return (x-y+mod)%mod;}inline int Dec(int x,int y){return x =mod?x+y-mod:x+y;}inline int mul(int x,int y){return 1ll*x*y%mod;}inline int read(){ int x=0,f=1; char c=getchar(); for(;!isdigit(c);c=getchar()) if(c=='-') f=-1; for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;} char sr[1<<21],z[20];int CCF=-1,Z;inline void Ot(){fwrite(sr,1,CCF+1,stdout),CCF=-1;}inline void print(int x,char chr=' '){ if(CCF>1<<20)Ot();if(x<0)sr[++CCF]=45,x=-x; while(z[++Z]=x%10+48,x/=10); while(sr[++CCF]=z[Z],--Z);sr[++CCF]=chr;} int n,k,d,limit; arr a,b,r[21],lg,inv,G[2];inline int qpow(Rg int x,Rg int p=mod-2,Rg int s=1){ for(;p;p>>=1,x=mul(x,x)) if(p&1) s=mul(s,x); return s;}inline void prep(int n){ inv[1]=1; for(limit=1;limit<=n;limit<<=1); fp(i,2,limit) inv[i]=mul(mod-mod/i,inv[mod%i]); fp(d,1,19){ lg[1< >1]>>1)|((i&1)<<(d-1)); } for(Rg int t=(mod-1)>>1,i=1,x,y;i<262144;i<<=1,t>>=1){ x=qpow(3,t),y=qpow(iG,t),G[0][i]=G[1][i]=1; fp(k,1,i-1) G[1][i+k]=mul(G[1][i+k-1],x),G[0][i+k]=mul(G[0][i+k-1],y); }}inline void NTT(int* a,int tp){ fp(i,0,limit-1) if(i >1),init(n); fp(i,0,n-1) C[i]=a[i],D[i]=b[i]; fp(i,n,limit-1) C[i]=D[i]=0; NTT(C,1),NTT(D,1); fp(i,0,limit-1) C[i]=mul(C[i],mul(D[i],D[i])); NTT(C,0); fp(i,0,n-1) b[i]=dec(inc(b[i],b[i]),C[i]); fp(i,n,limit-1) b[i]=0;}void Sqrt(int* a,int* b,int n){ static arr D,F; if(n==1) return b[0]=sqrt(a[0]),void(); Sqrt(a,b,n>>1); fp(i,0,n<<1) F[i]=0; Inv(b,F,n),init(n); fp(i,0,n-1) D[i]=a[i]; fp(i,n,limit-1) D[i]=0; NTT(D,1),NTT(b,1),NTT(F,1); fp(i,0,limit-1) b[i]=mul(inc(b[i],mul(D[i],F[i])),inv[2]); NTT(b,0); fp(i,n,limit-1) b[i]=0; memset(D,0,limit<<2),memset(F,0,limit<<2);}inline void Direv(int* a,int* b,int n){ fp(i,1,n-1) b[i-1]=mul(a[i],i); b[n-1]=b[n]=0;}inline void Inter(int* a,int* b,int n){ fp(i,1,n-1) b[i]=mul(a[i-1],inv[i]); b[0]=0;}inline void Ln(int* a,int* b,int n){ static arr A,B; Direv(a,A,n),Inv(a,B,n); init(n),NTT(A,1),NTT(B,1); fp(i,0,limit-1) A[i]=mul(A[i],B[i]); NTT(A,0),Inter(A,b,limit); memset(A,0,limit<<2),memset(B,0,limit<<2);}inline void Exp(int* a,int* b,int n){ static arr F; if(n==1) return b[0]=1,void(); Exp(a,b,n>>1),Ln(b,F,n),init(n); F[0]=dec(a[0]+1,F[0]); fp(i,1,n-1) F[i]=dec(a[i],F[i]); NTT(F,1),NTT(b,1); fp(i,0,limit-1) b[i]=mul(b[i],F[i]); NTT(b,0); fp(i,n,limit-1) b[i]=0; memset(F,0,limit<<2);}inline void Pow(int* a,int* b,int n,int k){ static arr F; memset(F,0,n<<2),Ln(a,F,n); fp(i,0,n-1) F[i]=mul(F[i],k); Exp(F,b,n);}int main(){ prep(1<<19); return 0;}